
 1

Applying Aspect-Oriented Programming to
Intelligent Synthesis

Robert E. Filman
Research Institute for Advanced Computer Science

NASA Ames Research Center MS/269-2
Moffett Field, California 94035

U.S.A.
rfilman@mail.arc.nasa.gov

http://ic.arc.nasa.gov/ic/darwin/oif/leo/filman/filman.html

I discuss a component-centered, aspect-oriented system, the Object Infrastructure
Framework (OIF), NASA’s initiative on Intelligent Synthesis Environments (ISE),
and the application of OIF to the architecture of ISE.

Object Infrastructure Framework
A critical issue in developing component-based and distributed systems is getting the assembled
set of components to follow the policies of the overall system. To achieve ilities such as reliabil-
ity, availability, responsiveness, performance, security, and manageability, all system compo-
nents must consistently perform certain actions. Unfortunately, developers of off-the-shelf or
pre-existing components, blithely unaware of or indifferent to these requirements, do not code
the appropriate policy support. For custom components, the developers are likely to be domain
experts, not experts in systems and distributed computing, and are similarly unlikely to consis-
tently and correctly code the calls to ility support routines. Furthermore, policies change over a
system’s lifetime. Tracking these changes in the components will be difficult or (lacking the
component source code) impossible. Separating out the specification and implementation of ili-
ties and providing mechanisms for weaving together the main functionality with the ility code is
a prime example of the potential leverage of aspect-oriented programming (AOP).

In earlier papers, we described the Object Infrastructure Framework (OIF), a CORBA cen-
tered, aspect-oriented system for achieving ilities in distributed systems [4, 5]. OIF realized the
following key ideas:

1. Intercepting communications. OIF intercepted and manipulated communications
among functional components, invoking appropriate “services” on these calls. Semanti-
cally, this is equivalent to wrapping or filtering [1] on both the client and server side of a
distributed system. The next five points can be understood as describing the architecture
of a flexible wrapping system.

2. Discrete injectors. Our communication interceptors are first class objects: discrete com-
ponents that have (object) identity and are invoked in a specific sequence. We call them
injectors. In a distributed system, an ility may require injecting behavior on both the cli-
ent and the server. (Figure 1 illustrates injectors on communication paths between com-
ponents.) Injectors are uniform so we can build utilities to manipulate them.

3. Injection by object/method. Each instance and each method on that object can have a
distinct sequence of injectors.

Applying AOP to ISE R. E. Filman

 2

4. Dynamic injection. The injectors on an object/method are maintained dynamically and
can, with the appropriate privileges, be added and removed. Examples of the application
of dynamic configuration include placing debugging and monitoring probes on running
applications and creating software that detects its own obsolescence and updates itself.

5. Annotations. Injectors can communicate among themselves by adding annotations to the
underlying requests of the procedure call mechanism.

6. Thread contexts. Our goal is to keep the injection mechanism invisible to the functional
components (or at least to those functional components that want to remain ignorant of
it.) To allow clients and servers to communicate with the injector mechanism, the system
maintains a “thread context” of annotations for threads, and copies between this context
and the annotation context of requests. Thread contexts and annotations together provide
the data space for communication between the application and injectors and among injec-
tors. (Injectors generated by the same factory or industrial complex can also share a data
space defined by their factory structure.)

7. High-level specification compiler. To bridge the conceptual distance between abstract
ilities and discrete sequences of injectors, we created a compiler from high-level
specification of desired properties and ways to achieve these properties to default injector
initializations.

Authen.Authen.

RetryRetry

Mgmt.Mgmt.

ReliabilityReliability

CORBA
Stub

Check auth.Check auth.

QoSQoS

Mgmt.Mgmt.

ReliabilityReliability

CORBA
Skeleton

ClientClient ServerServer

Client-
Side

Proxy

Server
-Side
Proxy

Network
Figure 1: Injectors on the Communication Path Between Components

Applying AOP to ISE R. E. Filman

 3

OIF was developed to simplify distributed computing. We developed our prototype system
for CORBA [10] components written in Java. CORBA is a distributed object technology (DOT)
that presents remote objects as proxy objects in the local computing environment. Client-side
proxies are responsible for encoding and forwarding a local call to the remote service; server-
side proxies for decoding and returning the result. CORBA requires the description of an object’s
interface in its interlingual Interface Description Language (IDL). The CORBA IDL compiler
then “compiles” that IDL into the code for the proxies in the desired execution language or
languages. We implemented OIF by creating an alternative IDL compiler whose proxies both
included calls to the proxy-specific sequence of injectors and maintained the request
object/annotation/thread-context relationships.

A premise of the OIF work was that components are black boxes whose internal structure
cannot be examined or manipulated. This contrasts with source-language–level approaches to
AOP like AspectJ [9] and subject-oriented programming [8] which express aspects as code
fragments to be woven together into a working program. Thus, OIF injectors are reusable— they
have their own “target-independent” semantics and the same injector can be used in multiple
places.

Examples of injectors we have developed or are developing include are listed in Table 1.
Several of these injectors are discussed in greater detail in [5].

Intelligent Synthesis Environment
The American National Aeronautics and Space Administration (NASA) Intelligent Synthesis
Environment (ISE) program is a grand attempt to develop a system to transform the way com-
plex artifacts are engineered. The program “aims to link scientists, design teams, manufacturers,

Ility Injector Action
Security Authentication Determines the identity of a user.
 Access control Decides if a user has the privileges for a specific operation.
 Encryption Encodes messages between correspondents.
 Intrusion detec-

tion
Recognizes attacks on the system.

Reliability Replication Replicates a database.
 Error retry Catches network timeouts and repeats call.
 Rebind Notices broken connections and opens connections to alternative

servers.
 Voting Transmits the same request to multiple servers (in sequence or par-

allel) combining the results by temporal or majority criteria.
 Transactions Coordinates the behavior of multiple servers to all commit or fail

together. Requires additional interface on application objects.
Quality of

service
Queue-manager Provides priority-based service.

 Side-door Provides socket-based communication transparently to application.
 Futures Provides futures transparently to the application.
 Caching Caches results of invariant services.
Manageability Logging Reports dynamically on system behavior.
 Accounting Reports to accounting system on incurred costs.
 Status Accrues status information and reports when requested.
 Configuration

management
Dynamically test for incompatible versions and automatically up-

dates software.

Table 1. Injectors

Applying AOP to ISE R. E. Filman

 4

suppliers and consultants in the creation and operation of an aerospace system” [6]. That is, geo-
graphically distributed engineers and scientists creating the design for, say, a spacecraft, should
be able to conveniently collaborate. This collaboration includes not only sharing information, but
also being able to use advanced analysis systems and virtual reality environments to explore the
properties of the design. The underlying system should track the changes and versions of design
artifacts and protect the intellectual property of the participants. The ISE vision thus shares intent
of applying analysis tools to designs with other initiatives (e.g., DARPA’s Simulation-Based De-
sign [3] and the National Industrial Information Infrastructure Protocols Consortium’s STEP
standard [7]) but differs in its extension to the human-computer interface.

Structurally, the ISE program divides into groups concerned with Collaboration (tools for
sharing information), Human-Centered Computing (immersive environments), Life Cycle Inte-
gration and Validation (version management) and Infrastructure for Distributed Computing
(software architecture). Software architecture is our primary concern. The ISE software architec-
ture (or ISA, for short) needs to provide (1) a database of design artifacts, information about
those artifacts, design tools, information about those tools, users and their rights and privileges,
and so forth; (2) a straightforward architectural layer to the application programmer that trans-
parently supports distribution and the invocation of distributed analysis tools, (3) access control,
transaction, version, and translation mechanisms, (4) scripting mechanisms (the ability to chain
together tool applications). I have been working with the group defining the ISE software archi-
tecture to try and realize these goals. In the next section, I present a view of an ISA shaped by an
OIF-based AOP model. Providing these additional aspects to an ISE-like environment makes
good challenge problem for aspect-oriented programming.

Applying AOP to ISE
In this section, I present the outline of an Intelligent Synthesis Architecture for ISE. The key
themes of this architecture are (1) ISA as a repository of synthesis artifacts (including informa-
tion about both the synthesis artifacts themselves and the tools used to create synthesis artifacts),
(2) ISA as an enabler of distributed computing and (3) ISA as a collection of synthesis services.
Critical to the ISE problem is incorporating and integrating legacy analysis tools. Such tools of-
ten exist in their own particular environments, take their own idiosyncratic inputs, and do who
knows what else.

The key ideas here are
? ? We reify (treat as objects to be talked about) users, tools, and design artifacts (the inputs

and outputs of tools.) Call such things entities.
? ? We record annotations about entities. (For example, file XYZ is the output of running tool

ABC on inputs G and H. This was done on May 15th by STU. It has the following permis-
sions, precision, version, and so forth.) We cannot anticipate all the annotations that users
might want, so the set of annotations must be dynamic. We may also profitably apply the
knowledge representation mechanisms of expert system building tools (e.g., default val-
ues, inheritance, access-oriented programming).

? ? Since we know about the available tools and the annotations they impose on their out-
puts, and since tools are expressed as distributed objects, we can run these tools (re-
motely) and can script together collections of tools.

? ? Tool scripts and application programs can take advantage of a number of system-
provided services. (The repository can be seen as be one such service.)

Applying AOP to ISE R. E. Filman

 5

We argue for a four layer architec-
ture for ISA (Figure 2). The low-
est layer, the transport layer, en-
ables secure remote invocation.
Above it, a repository provides a
database of synthesis artifacts and
their attributes. The Common Ser-
vices layer provides services on
which every user of ISA can rely,
and the Extended services layer
uses the mechanisms of the re-
pository and transport layer to
provide optional additional facili-
ties.

The obvious (from our point
of view) choice for the transport
layer is CORBA extended with
OIF. By wrapping existing tools in CORBA wrappers, tools can be accessed by a distribution-
transparent, software-bus mechanism. CORBA is the most mature of such architectures. In con-
trast with DCOM, it runs on a large variety of operating systems and with programs compiled in
many languages. In contrast with Java RMI, it is particularly tuned to legacy applications. And in
contrast to the next generation of HTTP, well, for one thing, it’s already here.

OIF injectors on CORBA-wrapped tools and services can be used to
? ? Maintain the annotations of artifacts created by running tools. Injectors can note, for ex-

ample, the “owner” of a process and include in the repository the information about that
owner, or store pointers to the “inputs” of a tool on the annotations of its outputs.

? ? Enforce complex, not-yet-anticipated access control rules on data, particularly as contrac-
tors form federations to deal with design subproblems.

? ? Enforce automatic data set transformations to translate between representations.
? ? Supply alternative servers of the same service.
? ? Report on the status of jobs to distributed managers and debuggers.
? ? Support “session” environments reflecting user privileges downstream and carrying the

user environment.
? ? Support “long-lived” transactions needed by the design process, (in contrast “database”

transactions, such as bank account updates and airline reservations.)
? ? Obtain and assure the appropriate versions of datasets.
? ? Provide software redundancy and mobility, enabling moving computations and data for

increased efficiency.

Each of these concepts can be realized by inserting the appropriate injectors on some or all of the
methods of a tool or service. It is also the case that for each of these, we don’t really know at this
point what exactly we want done— what we mean by versions, access control restrictions, system
management, transactions, and so forth. However, this is a strength of the injector approach, in
that we can experiment and resolve these issues by the results of these experiments, rather than
demanding omniscience at the original design time.

Transport

Repository

Naming
Trading

Events Agents …

D
B

 M
ining

A
utom

atic
Search

W
orkflow

Scripting

V
isual

assem
bly

K
now

ledge
capture …

Tool
Services

 Extended C
om

m
on

Figure 2. Intelligent Synthesis Architecture

Applying AOP to ISE R. E. Filman

 6

The Common Services layer would support services such as name serving, matchmaking,
trading, events, system management, agent infrastructure (whatever that might mean) and tool
wrapping. The Extended Services layer would support services such as repository mining, auto-
matic design search, workflow automation (notifications and actions on events), visual assembly,
and knowledge capture. I mention these more for completeness than for their relevance to AOP,
though some might encode well as injectors.

Concluding Remarks

The Object Infrastructure Framework provides a mechanism for performing Aspect-Oriented
Programming at the component level. We have discussed how the OIF mechanism could be ap-
plied to the development of an architecture for an Intelligent Synthesis Environment and how
ISE could serve as a challenge problem for AOP

Acknowledgments
The ideas expressed in this paper have emerged from the work of the NASA Ames Variational
Design group, the NASA ISE project, and the MCC Object Infrastructure Project. I thank Stu
Barrett, Chris Knight, David Korsmeyer, Diana Lee, Barry Leiner, Ted Linden, Johnny Medina,
Tarang Patel, and Don Van Drie for their contributions.

References
1. Aksit M. and Tekinerdogan B. Solving the modeling problems of object-oriented languages

by composing multiple aspects using composition filters. AOP '98 workshop position paper,
1998. http://wwwtrese.cs.utwente.nl/Docs/Tresepapers/FilterAspects.html

2. Beugnard, A. How to make aspects re-usable, a proposition. In Lopes, C., Bergmans, L.,
Black, A. and Kendall, L. Proc. Aspect-Oriented Programming Workshop at ECOOP ‘99

3. Dabke, P. Enterprise Integration via CORBA-Based Information Agents. IEEE Internet
Computing 3 (5) September 1999, pp. 49–57.

4. Filman R., Barrett S,. Lee D., and Linden T. Inserting Ilities by Controlling Communica-
tions. To appear in Comm. ACM, 2000.
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/oif-cacm-final.pdf

5. Filman, R. E., Korsmeyer, D. J., and Lee, D. D. A CORBA Extension for Intelligent Soft-
ware Environments. To appear in Advances in Engineering Software, 2000.
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/williamsburg-submit.pdf

6. Goldin, D. S., Venneri, S. L., and Noor, A. K. Beyond Incremental Change. IEEE Computer
31(10), October 1998, pp. 31–39.

7. Hardwick, M., Spooner, D. L., Rando, T. and Morris, K. C. Data Protocols for the Industrial
Virtual Enterprise. IEEE Internet Computing 1 (1), January 1997, pp. 20–29.

8. Harrison, W. and Ossher, H. Subject-Oriented Programming (A Critique of Pure Objects).
Proc. OOPSLA ’93. ACM SIGPLAN Notices 28 (10), October 1993, pp. 411–428.

9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and Irwin,
J. Aspect-Oriented Programming. Xerox PARC Technical Report, February 97,
SPL97-008 P9710042. http://www.parc.xerox.com/spl/projects/aop/tr-aop.htm

10. Siegel, J. CORBA: Fundamentals and Programming. New York: Wiley, 1996.

